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ABSTRACT

Preston-tubedata have been obtainedon a sharp-nose,ten-degreecone in

the NASA Ames ll-ftTWT and in flighttests. Duringanalysesof the laminar-
!

boundary-layerdata , errorswere discoveredin both the wind-tunneland the

flightdata. The apparenterrorsin the ll-ft TWT data are relativelyminor

and were easilycorrected. However,the errors in the flightdata are much

more severe. A great deal of effort was expendedin the search for a rational

procedurefor correctingthis data. A correclionprocedureis recommended

which forces the flightdata to exhibit some of the orderlycharacteristicsof

the wind-tunneldata.

Subsequentto correctingthe wind-tunneldata, a correlationis developed

betweenPreston-tubepressuresand the correspondingvalues of theoretical

laminarskin friction. Becauseof the uncertaintyin correctingthe flight

data, a correlationfor the unmodifieddata is dewloped, and, in addition,

three other correlationsare developedbased on differentcorrectionprocedures.

Each of these correlationsare used in conjunctionwith the wind-tunnel

correlationto define "effective"freestreamunit Reynoldsnumbersfor the

ll-ft TWT over a Mach number range of 0.30 to 0.95. Using the preferred

correlation,based on the recommendedrearrangementof the flight data, the

maximum effectiveReynoldsnumbersare approximately6.5% higher than the

V normal valuesover a unit Reynoldsnumber range of 9.8 to 16.4million per
meter. These maximum valuesoccur betweenfreestreamMach numbersof 0.60

and 0.80. Smallervaluesare found outsidethis Mach number range. These

resultsindicatewind-tunnelnoise__ffectsthe averagelaminarskin friction

much less than it_'ffectsboundary-layertransition.

Data on the onset, extent,and end of boundary-layer-transitionare

also summarizedfor these tests. The wind-tunneldata indicatea Reynolds

n_ber, based on distanceto end-of-transition,is a unique functionof noise

and Mach number.

Finally,a procedureis describedfor studyingthe relativeeffectsof

_ varyingnose radiuson a ten-degreecone at supercriticalspeeds. Preliminary

resultsindicateincreasingnose radius promotesboundary-layertransition

, and separationof ]aminarboundarylayers.
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NOMINCLATURE

Cf Skin-frictioncoefficient(2 Tw/PeUe_)

i_ Cf Nondimensionaldifferencebetweentheoreticaland correlated
skin.--frictioncoefficient[(Cf,t - Cf,c)/Cf,t]

i Cp Pressurecoefficientbased on the differencebetweena Pitot
and static pressurereading [(Pp - Pw)/qj

i? (Cp) c_" Pressure.coefficienton surfaceof cone [(Pw " P')/qJ

i (Cp)rms Fluctuating pressure coefficient based on microphone datad External diameter of a round Pitot_probe

D Internal diameter of a pipe; in Appendix B, denotes diameter
of base of cone

h External height of face of a flattened Pitot probe

H Boundary layer shape factor (6./0)

Kef f Nondimensional effective height of Preston tube (2Yeff/h)

L Axial length of cone, 44.5 in.

M Mach number

M Friction Mach number, ( w/yPw)

Pe Static pressure at outer edge of boundary layer

pp Preston tube pressure

Pw Static pressureat wall

_:Pp Differencein pressurebetweena Prestontube and wall pressure

q,.. Freestreamdynamicpressure(pU_=2/2) I

Rd Reynoldsnumber based on UD and externa_diameterof a circular
Prestontube (Upd/Ue) or hi=ightof a flattenedprobe (Uph/_e)

RD Reynoldsnumber based on diameterof a sphereand freestreamconditions

_ * Reynoldsnumber based on surfacelength from stag..ationpoint
s and v evaluatedat the referencetemperatureof Sommerand

Short (UeS/V')

R Reynoldsnumber,basedon probe heightand wall properties,UTh/_wI

Re CriticalReynoldsnumber for a spherec

Red Reynoldsnumber based on externaldiameterof a circu|arPreston
t_lheand propertiesat outer edge of boundarylayer,Ued/_e

X
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' ReD Reynoldsnumber for incompressibleflow thru a pipe of
; diameterD, (UmD/V)

Rem Freestreamunit Reynoldsnumber per ;neter(UJvJ

I (Rem)eff Effectivefreestreamunlt Reynoldsnumber per meter

_ , Ret Reynoldsnumber basedonpropertiesat outer edge of boundary
layer and Xt

ii ReT Reynoldsnumber based on freestreampropertiesand XT

S Surfacedistancemeasured from a stagnationpoint

T Temperature

u Velocityparalle1..toboundingsurface

u+ Nondimensionalvelocityused in the law-of-the-wall(u/U_) I
U Velocityparallelto axis of cone

Ue Velocityat outer edge of boundary layer

Um Mean or averagevelocity in a pipe flow

b Up Velocitycalculatedfrom Preston-tubedata and Pw
0.5

U Classicalwall-shear-stressvelocity (Tw/p)

U Freestreamvelocity

w Externalwidth of face of a flattenedPitot probe in a direction
parallelto the wall but normal tot he undisturbedstreamlines

x Distancealong axis of cone

x* Dimensionlesspressuredifferencefor incompressibleflow

logto[APpd2L4 p_2]

X Distancealong surfaceof cone; AppendixB, distancealong axis
measuredfrom apex of a sharp-nosecone............

X£ Most forwardstationat which Preston-tubemeasurementsbegan

Xt Distancealong surfaceof cone from apex to onset of boundary-
layer transition

XT Distancealong surfaceof cone from apex to end of boundary-
layer transition

X* Dimensionlesspressuredifferencefor compresslble,nonadia-

batic flow loglo(Up Yeff/Vw)2

XA* A11en'scorrelationparameter1oglo(Upd/v')

AX Length of boundary-layer-transitionzone

xi
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y Distance measured normal to the wall; Appendix B, denotes
perpendicular distance from axis of cone

Yc Distanceof geometriccenter of Preston..tubefromwall

y Nr)ndimensionaldistancefrom the wall as used in the law-of-

the-wall(tly/,_)

y* Dimensionlessshear stress,for incompressible,isothermal '
fh)w loglo['[wd2/4p_2or 0.25(U d/v)_]

Yeff Effectiveheightof face of Prestontube = heightof an undis-
turbedstreamlineabove the wall which-bas--a-to-talpressure
equal to the measuredPitot pressure

Y* Dimensionlessshear stressfor-compressible,nonadiabatic

flow loglo('rwY_ff/Pw_w2) 'I
YA* Allen's correlation parameter logloC_U_d/u')

!Greek Letters

I

Angle-of-attack,definedto be positivefor nose up i

Yaw angle,definedto be Rositivewhen nose is to portside
4

r Total effectiveangle-of-attack,(m2 + B2)½ i
Boundarylayer t'lickness i

_* Displacementthicknessfor compressibleboundarylayer

o Momentumthicknessfor compressibleboundarylayer

iL _lecular viscosity
]

\_ Kinematicviscosity

p Densityof fluid

-t Shear stress at wall
W

w Nendimensionalwall shear stress " w'(_wd_/p_

._ Azimuthalangle,measuredclockwise(lookingforward)from

the top of cone

xil
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I. INTRODUCTION

A. Backg_round

Since the 1920's,it has been known that freestreamturbulencewithin

wind tunnelscauseddifferencesbetweenostensiblyidenticaltests in dif-

ferentwind tunnelsand in flight. It was discovered,during these early

i_ years, that these differencesin low-speedwind-tunneltests could be ac-countedfor by definingan "effective"freestreamunit Reynoldsnumber-

whichwas higher than the correspondingflightunit Reynoldsnumber. The

i now classicalprocedurefor definingan "effective"freestreamReynoldnum-
ber was developedbased on the drag of a sphere. This procedureis based

on the well-knownfact (even in the 1920's)that the drazjcoefficientof a

sphere (anda circularcylinder)drops sharplyat a critical Reynoldsnum-

ber of the order of IOs. This sharp drop in drag coefficientis caused by

transitionfrom a laminarto a turbulentboundarylayer near the shoulder _

of the sphere. The turbulentboundarylayer remainsattached overa longer

distanceal_mg the surfaceof the sphere and thereby reducesform drag.

Accordingto Pope and Harper_, a conventionwas eventuallyadopted to

define the critical Reynoldsnumber as the one which correspondsto a sphere

drag coefficientof 0.30, which occurs roughlyat the maximum in d(CD)/d(RD).
Carefulmeasurementsin free-airshowed that the criticalReynoldsnumber was

approximately385,000. The values measured in wind tunnelswere always found

to be less. This led to the formulationof a turbulencefactor definedas

the ratio of the free-aircriticalReynoldsnumberdivided by the correspond-

ing wind-tunnelvalue, i.e.,

TF : 385,000/(Rec)wT

The "effective"tunnel unit Reynoldsnumber is then definedby i

(Reft)eff= (TF) (Rem )

Additionald_tailsof this procedurecan be found in Ref. 1. Unfortunately,

this 1_thod becomes inaccurateabove M_ = 0.35 as compressibilityeffects

become important. In particular,the spheregeneratesa rather sLrong shock

slightlydownstreamof the shoulderof the sphereat high subsonicMach num-

bers. This phenomenachangesthe relationbetweendrag and Reynoldsnumber,
W

e.g., see Lu2.

1
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In law-speedtunnels(M,.,< 0.50) the freestreamunsteadinessis pre-

dolnin_ntlyvorticitywhich is controlledin modorn tunnelsby a carefully

desiqnedturbulence-managementsectionupstreamof tiletost section,e.g,,

I.oehrkeand Nagib3 and Eckert,et al._ Whereas,in transonictunnelsthe

dominantsourceof flow unsteadinessis wall-genera_ednoise caused by flow

throughand across the ventilatedtest-sectionwalls which are requiredto

establishsteady__f_Iownear Mach one. The_noiseintensitylevels in transonic

tunnelstypicalpeak betweenM = 0.70 and 0.80, e.g., Reed, etal. S The

AEDC B_oundaryLayer TransitionCone (see Fig. l) was designedto calibrate

the effectsof noise on boundary-layertransition. It is superiorto a

spherebecausea sharp-nosecone does not generatea significanttransonic

shock.* The need for such a calibrationdevicewas indicatedby discrepancies
>

betweennumeroustransonicwind-tunneltests of modelsat ostensiblyidenti-

i col flow conditions. A particularlywell-documentedstudy of differencesin

staticaerodynamicdata has been obtainedwith the same model of a C-5A trans-
I

' port aircraftin three major transonicwind tunnels;the resultshave been

reportedby Treon, etal. 6 The differencesbetweenthe three differentsets

I. of tunneldata were reducedby accountingfor "relative"Reynoldsnumber ef-
p fects betweenfacilities. The AEDC lO-degcone was used to define the dif-

ferencesin "relative"Reynoldsnumber. As noted by Doughertyand Steinle: ,

"Theseresultssubstantiatedthe need for developinga method for
, predictingthese correctionsto Reynoldsnumber to improvethe

extrapolationof wind-tunneltest resultsto full-scaleflight
conditions,i.e., a "turbulencefactor"for transonictunnels.
Althoughthe "effect"associatedwith these differencesin transi-
tion characteristicsbetweentunnelsis of prime importancein ad-
justingthe data, the "cause"is of particularsignificancesince
it relatesdirectlyto predictingthe "effect"in new and different
facilities. This illustrationof improvementin agreementof re-
sults betweentransonicfacilitiessuggeststhe use of transition
Reynoldsnumber for such correctionsto be both technicallyappro-
priateand productive."

In 1971, an extensivetest programwas begun in which the AEDC-BLTcone

was testedwith the same probe-traversingmechanismand instrumentation,see

Fig. I. (Additionaldetailsof the cone are given in Refs. 7 and 8.) In

addition,the cone was accompaniedby DoughertyfromAEDC in order to assure

test procedureswere matchedas closelyas possible, The primarypurposeof

Lhis programwas to simplydetect the locationof the boundary-layer-transi-

tion-zoneon the coilein differentwind tunnelsand in free-flightbut at

_See7_l_il-d-_x_ Fo}r-_c_s-l-6-n-o-6T'ille--e-ffectsof nose bluntnesson
traflsonicflow about cones.

2
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i(h)i1t:ical(or comparable)valuesof M, Reln and q,. The techniqueof using

a traversingPitot probe to detectboundarylayer transitionhas been used

since the 1930's. In fact, the first Wright Brothers'Lectureby Jones9 in

1937describesthe utilityof this techniquein flighttests. Figure2 is

taken from this paper and shows clearlythe change in total pressureacross

the transitionzone along differentpaths parallelto the boundingsurface.

The resultsof tests in six differenttunnelsis reportedin Ref. 7, and
|-

(_su;b_naryof resultsobtained in twenty three tunnelsand a concludingflight

test are reportedby Doughertyand Fisher.8 In this concludingreport,

Doughertyand Fisherfound that the data for transitionReynoldsnumber,

based on the productof local unit Reynoldsnumber and distance from nose to
-°25

end-of-transition(XT) was proportionalto (Cp)rms, with an-errorband of
This representsa significantstep forwa.r_d_inthe developmentof a

b procedureto calibrateflow qualityin transoni_wind tunnels.

The purposeof the work reportedherein i-s-toinvestigatethe possibi-

"- lity of using the traversing-Pitot-probedata to derivemore preciseand/or

additionalinformationconcerningthe effectsof noise on flow quality. The

basic approach,which was selectedto achievethis objective,is to interpret

the surfacePitot-probedata as Preston-tubedata, i.e._ total pressuresnear

the wall which can be relatedto skin friction. Unfortunately,four different-il

probeswere used during the seriesof wind-tunneltests,and two were used

during the flighttests. Replacementwas necessarybecauseof probe wear(alongthe undersideof the probe where it made contactwith the cone),

damageand/or deteriorationduringuse. This did not introduceany signifi- II
cant problemwith regardto detectionof transitionbut does becomevery im-

portantif the data are to be interpretedas Preston-tubedata. In order to

set the stage for this type of analysisof the data, the basicsof Preston

tubes and their use to measureskin frictionis now introduced.
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B. Preston Tubes

According to Preston I°, the British engineers Stephens and HaslamI_

suggested in 1938 that it should be possible to use the data from a Pitot

tube traversed along a surface to infer skin friction. Apparently, this

idea was not pursued until Preston's work-during the early 1950's. He

developeda correlationbetweenskin frictionand the total pressureas

measuredwith circularpitot tubes restingon the insidewall of a pipe.

In order to developthis correlation,Prestonassumedthe classical

law-of-thewall is valid across the face of the probe and chose the,

characteristiclengthto be the heSghtof the geometriccenterof the

probe above the wall, i.e., d/2. As shown in Ref. 12, this leads to the

followingrelationbetweenPreston-tubepressureand skin friction.

(Pp - Pw) d/2 _wd__2
p_2 = G[ Pv 2 ]

or inversely,

Tw d2 F AP d24p 2 = - (I)

This relationsuggesta convenientmethod to determineskin friction_ince

the shear stress is uniquelyrelated(for given fluid propertiesp and v)

to the differencein pressuresbetweena Pitot tube (OD = d) and a static-

pressureorificeat the wall. Using Eq. (1) as a guide, Prestonobtained

measurementsinsidea pipe flow with circularPitot tubes having four dif-

ferent externaldiametersbut constant ratiosof internalto external

diametersof 0.6. Pipe Reynoldsnumber was variedover the range lO" <

ReD < IOs. Skin frictionwas determinedvia measurementsof pressuredrop

over a known lengthof constantdiameterpipe, viz., rw : (Pl - P_)D/4L.
An empiricalfit of the data led to the followingcorrelation.

y*_-1.396+ _x* [Preston, 1954] (2)

Where y* :_logLo (_wd2/4¢_v_) and x* _ log10 (APpd_/4pv _)

In this same paper, Prestonalso reportedmeasurementswith the tubes on the

fleorof a wind tunnel in slightlyfavorableand strongadversepressure *

gradients. The use of Eq. (2) to convertthe pressuremeasurementsinto

skin frictioncoefficientsled to a set of data that was consistentwith

6
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correspondingboundary-layersurveyswith a minature,flattenedPitot

probe.

Thus, in additionto the surfacePitot measurementswith circular

: probes,Prestonalso used a small (h : 0.015 cm.) flattenedPitot probe

i , to measurevelocityprofiles. In an effort to obtain accurate profiles,

,_ he employedan earlierestimateby Young and Maas13 that the effective

centerof the probe would be displaced0.25h toward the regionof higher

i _ wlocity. This correctionis ostensiblyto accountfora velocitygradientacross the heightof the probe face. This is needed becauseas noted by Chue_4:

i "Errorscaused by the presenceof a shear flow across the mouthof the pitot tube are due to the followingtwo effects:
(i) the stagnationpressureis proportionalto the

squareof the velocityand when this is integrated
over the orifice, it will have a higher value than
the stagnationpressurecalculatedfrom the square
of the velocityat the geometriccentre of the ori-
fice; and

(ii)the presenceoF the probe in a velocitygradient
causes deflectionof the stream lines toward the

regionof lower velocity. This deflectioncauses
the probe to indicatean impact pressurein excess
of that existingat the same locationin the absence
of the probe.

The existenceof the second effect has been qualitativelydemon-
stratedby smoke photographs. Both of these effectsare therefore
seen to cause the probe to read high, which explainsthe outward
d_splacementof the effectivefrom the geometriccentre."

The net effect is the measuredpressurecorrespondsto the total pressure

of a streamlinewhich is above the geometriccenter of the probe. Although

Prestonattemptedto correct for this effect of shear, he noted that there

is an additionaleffectassociatedwith proximityto the wall. In particular,

when the flattenedprobe was within a distance 3h of the wall, he found the

displacementof the effectivecenter was reducedand appeared to be a func-

tion of U_h/v.

Prestondid not attemptto define the functionalrelationshipbetween

Yc,h and Reynoldsnumber. However,this was subsequentlyundertakenby
MacMillan_s for circularPitot probes. His measurementsindicatedthat

when the geometriccenter of a circular probe is more than two diameters

_ away from the wall, the effectsof the wall on displacementof the effective

center is nil, and the displacementdue to shear alone is O.15d (i.e.,
Q

Yeff = 0.65d),independentof Reynoldsnumber. He also establishedthat the
effectof the wall is to reduce this displacementand move the effective

7
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probe positioncloser to the wall. This is easilyseen when one realizes

that the downwardflowacross the face of the probe (causedby shear)

is impeded as a probe approachesthe wall. Furthermore,the oncoming

streamlines(belowthe center of the probe) begin to lift upward and move

over and aroundthe probe insteadof passingunderneathbetweenthe probe

and the wall. MacMillanproposeda singlecurve for a velocitycorrection

which is to be added to-themeasuredvelocityin order to accountfor wall

displacementeffects. The correctionJs a functiononly of Yc/d and is 1.5%

of the measuredvelocitywhen Yc/d =0.5 and is zero when Yc/d _ 2.0. This
correctionfor wall effectsis to be added to the displacementeffectsof

shear. By expressingthe wall effect in terms of a fractionof the measured

velocity,MacMillanwas able to define a correctionwhich is independentof

Reynoldsnumber. However,since the measuredvelocityat a given value of

Yc/d isa functionof ReD, the displacementcaused by wall proximityis also

a functionof ReD. Thus, MacMillanconcludedthat the total displacementof

the effectivecenter is a functionof Yc/d and UTd/v when 0.5 _Yc/d < 2.0. i_
It is relevantto here note that any displacementeffects,which occurredin

Preston'sdata, are buriedwithin the empiricalcoefficientsof Eq. (2).

In 1964, Pate]16 publishedthe resultsof an extensiveset of tests

with fourteendifferentcircularPitot probesand three differentpipe

diameters. He obtaineda more accuratecalibrationfor Prestontubes and

establishedlimitson the pressure-gradientconditionswithinwhich his cali-

brationcan be used with prescribedaccuracy. Patel obtainedempiricalequa-

tions for y* = f(x*) overthree rangesofy*: (1)3.5<y*<5.3, (2) 1.5<y* <

3.5, and (3) y* <I.5. These three regionscorrespond,respectively,to the

fully-turbulent,the buffer or transitionzone, and the viscous-sublayer

regionsof the classicallaw-of-the-wall.In incompressibleflow, the normal

Preston-tubeReynoldsnumber range correspondsto the buffer zone, and for

this regionPatel obtained

y* = 0.8287 - 0.]381x* + 0.1437(x*)2 - O.O060(x*)3, (3)

where: 1.5 < y* < 3.5 or 5.6 < U_d/2_ < 55. Pate] claims this correlates

his data to within_ 1.5% of _w.

In the viscous-sublayerregion,Patel found his data was correlatedby

• y* : 0.5x* + 0.037, (4) ,

_. wheat:y* ¢ 1.5 or U_d/2_ < 5.6

8
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In this near-wallregion,the classicallaw-of-the-wallexhibitsthe linear

relation

�+
u z u/UT _ U_y/_ _ y (5)

I
In order to relate Eqs. (4) and (5),Patel introducedKeff and definedthe
"effective"centerofa round Pitot tube to be at

Yeff _ Keff d/2 (6)

By definitionof the effectivecenter,the velocityrecordedby a Preston

tube, Up, is the true velocityat Yeff'

• aPp 1 _ 1• • = _ pU_ = _ p(U2)y=yeff
(7)

If this i_ substitutedinto Eq. (5), the resultsare

y* = O.5x* 0.5 loglo (0.5- Keff). (8)

Now equatingEqs. (4) and (8) and solvingfor Keff, a value of 1.3 ts
obtained.

Patel noted that this agrees "precisely"with the value determinedby

MacMillan. However,this value for Keff is equivalentto MacMillan'sre-

sults for displacementdue to shear alone, i.e., when Yc/d > 2.0. l_hereas,
in the case of Patel'suse of Pitot tubes restingon the bounding surface,

the value of Yc/d is 0.5. Thus, Patel'sresultsfor Keff appears to be for-
tuitous,but an argumentcan be made that makes this plausible. Firstly,

MacMillannoted an additionaldisplacementcorrectionfor viscouseffects

on Pitot probes in zero-shearleads to larger,positivedisplacementswhen

U_d/__ 25.** Secondly,as previouslydiscussed,wall proximityeffects

resultin a reducedor a negativedisplacement. Therefore, it appears

(assumingno significantexperimentalerrors)that Patel'svalue for Keff
occurs because viscosity and wall effects cancel each other.

_s noted in t-he-r'evlewarticle-byChuei4, it is generallyagreed that the
pressurecoefficient(Cn) for a Pitot probe is greater than one when U d/2u _.
300. However,there s no concensusbetweenexistingexperimentaldata and
theoreticalresultsas to preciselyhow Cp varies with Reynoldsnumber.

9
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II. RESULTSOF PRELIMINARYANALYSES

. OF WIND-TUNNELDATA

The traversingPitot probes,used during the AEDC-BLTCone tests,

_/ are of the flattenedor oval- haped type. Figure 3 shows typicaldimen-

sionsof the probe used during flighttests of the cone. The probes

used in wind-tunneltests are geometricallysimilar_ The particular
!.

probe,used during tests in the NASA Ames ll-ft T_ransonickind T_unnel

i! (TWT),had a heightof 0.0097 in.
i-

Since Patel'sresultsare for circularPrestontubes,they cannot

be applieddirectlyto the AEDC Cone tests. In addition,these tests

were conductedat transonicspeeds and compressibilityeffectsare ex--

pected. With regard to flattenedPrestontubes, Quarmbyand Dasl? con-

ducted an experimentalstudy and calibrationof six oval_shapedprobes

when used as Prestontubes. When x* > 4.6, they found these probesgave

exactlythe same calibrationrelationbetweeny* and x* as was obtained

by Patel (Eq. 3) if the externalheight of the probe face is used in place

of d. At lower valuesof x*, the negativedisplacementof the effective

centercaused by wall proximitywas larger (=5%) for the flattenedprobes

with aspect ratiosbetween1.5 and 1.9.** The followingcalibrationequa-

tion correlatedthe measurementsof Quarmbyand Das to within 1.5% of _w"

y* = 0.5152+ 0.1693 x* + 0.0651 (x*)2

for 3.38 < x* < 6 (9)

Since these resultsfor oval-shapedPrestontubesagree so closelywith

Patel'sresultsand Patel'svalue for Keff : 1.3 appearedto be appropriate

in the viscous-sublaey_er_ofa turbulentwall-flow,it was initiallydecidedto

use this same value in an attemptto correlatethe traversingPitot probe

data obtainedwithin the laminarboundarylayeron the AEDC Cone. This ap-

peared to be reasonablein light of the fact that the x*'s for the cone

data were > 5.5. Althoughthis is equivalentto assumingKeff is independent
of Mach number,Reynoldsnumber,velocitygradientacross the face, and

aspect ratio, this assumptionwas attractivebecauseit greatlysimplified

tileanalyticalwork.

Now turningour attentionto compressibilityand Mach numbereffects,

w_F_is is consistentwith the idea that f-lowabout the face becomesmore
two-dimensionalas aspect ratio increasesand more of the flow passesup
and over the face ratherthan around the sides.

iO
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Allen_" has performedthe most comprehensiveanalysisof Prestontubes in

supersonicboundarylayers. He developeda correlationusing three inde_

pendentsetsof simultaneous measurementsof Preston-tubepressuresand

skin frictionvia a floating-elementforce balance. These data were ob-

tainedwithin flat-plate,turbulentboundarylayers and with Mach numbers

in the range: 1.6 _M _4.6, Allen selectedthe same basic dimension-

less parametersas Patel;except he chose to evaluatethe fluid properties
t

p and v at a referencetemperaturedevelopedby Son_nerand Short_9, anC

the velocityUp was calculatedfrom Pp and th_ wall pressure Pw (= Pe) using
standardcompressibleflow relations.**

upp,
} :Iog,o(Up (lea)XR_ Iogio I_-_e _,-Re&ue

YX _ loglo{ p--e-eRed(P'Cf/pe)½}=log,o (v_2" U d/v') (lOb)p,

The primesdenote propertiesevaluatedat the Sommer and Sho-r-treference

temperature,viz.,

= 2 + 0.45 Tw/Te (ll)T'/Te 0.55 + 0.035 Me I]

The correlationderivedby Allen is II
1

YR = -0.4723+ 0.7814XR +-0.01239(XR)2. (12) !

[Allen,1977] !

r Allen found that the majorityot the skin-friction-coefficientdata were witnin
+15% to -12%of Eq. (12). This rather large scatter,comparedto the in-

compressiblepipe-flowcalibrationsof Patel_ and Quarmbyand Das_7, is

W at leastpartlyassociatedwith the much greatersensitivityand vulnerability

! of floating-elementbalancesto extranneouserrors.i't

Obviously,the parametersused by Allen are logicalcandiaatesin
D

any attempt to correlatethe transoniccone data. However,the basic pur-

pose of a referencetemperatureis to permit use of skin frictionfocmulas

for incompressibleflow to estimatecompressibleskin frictionby evaluating

fluidpropertiesat the referencetemperature. Thus, the resultingreference

propertiesrepresentan "average"value acrossa boundarylayer. Whereas,

small Prestontubes encounteronly the flow near the wall. Therefore,it

appearedto us that propertiesbased simplyon the wall temperaturewould

he n_re apropo. The utilityof evaluatingpropertiesat both of these tempera-

*-*The(leta-ilscan b_?ound I_ the reportby Allen2° or Reed, et al.12
F=Al1_n_ has discussedthe variouserror sourcesin floating-elementforce

I? hal_inces,and he has recentlysuggestedan improveddesign for this typeof
• instrument,Ref. 22.
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tures was investigated,and the resultsare reported followinga summaryof

the wind tunnel data.

i Wind Tunnel Data
w

; . Althoughthe AEDC-BLTCone ha_en tested in twenty three different
wind tunnels,only the analysesof subsonicdata from the NASA Ames ll-ft

TransonicLind Tunnel (TWT) is reportedherein. SufacePitot-probesurveys

were taken along the cone betweenaxial stationslO and 89 cm. aft of the
nose. Table I lists the twentyone subsonicflow conditionsat which the

cone was tested.** The patternof typicalpressuresurveysat high and low

Reynoldsnumbersare shown_ respectively,in Figures4 and 5.

As a point of departure,this researchseeks a correlationbetweenthe

Preston-tubepressures,measuredwithin the laminarportionof the cone's

boundarylayer,and the correspondingtheoreticalvaluesof skin friction.

If successful,the intentwas, and is, to compare such a correlationwith

the correspondingcorrelationfor flight data. It is thoughtthat such a

comparison can lead to the definitionof an "effective"unit Reynolds

number for the ll-ft TWT. However,a literaturesearch for Preston-tube

data within laminarboundarylayers turnedup only one reference,viz.,

Prozorov._

ProzorovobtainedsurfacePitot-probemeasurementswithin low-speed,

flat-plate,laminarboundarylayers. He used four circularPreston tubes

and three rectangular-shapedprobeswith aspect ratios of 5.21, 5.21, and

5.00. Althoughhis data exhibitedconsiderablescatter,he concluded,

based on his measurements,that Keff is a universalfunctionof Upd/V (or Up
h/v) for both laminarand turbulentboundarylayers and is independentof

probe geometry.++ Within the accuracyof his data, Keff has nearly a constant

valueof 1.3 when Rd > lO0 and approaches1.8 when Rd : 32. This essential-

ly verifiesthe resultsof Preston for turbulentpipe flows. However,

Prozorovfound Twd2/pv_ to be a differentfunctionof Rd for laminar boundary
layers comparedto what Preston found. The two calibrationcurves for

Twd2/pv2diverge for Rd _ lO0. He explainedthis in terms of the following

equationwhich was derivedfrom a Maclaurinseries expansionof Up at small
distancesfrom the wall and the conservationof mass and momentum for steady,

two-dimensionalflow.

_ATthough surveyswere _ conduct_ supersonicspeeds,the shock
interactionsbetweenthe traversing-probeassembly and the hemispherical
Pitot-staticprobe were not completelycalibrated,and thus the supersonic
datawere notincludedin this research.

15
++This is inconsistentwith the resultsof MacMillan which indicatedKeff
for circularPrestontubes is a functionof U_d/v and the resultsof Quarmby
and Das_ which indicatedKeff is also a functionof aspect ratio. 13 _i
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Table I. Wind Tunnel Cases Used To Develop !
LaminarCorrelatlol!s

11L IIT II I-

I RIINNO. M,. R% x 10-6 q,_(kPa) n_° i_*

_ 15.231 0.95 13.1 33.1 -0.05 0.02

W' 19.289 0.8 13.1 29,5 -0.00 -0.02

21.318 0.7 13.1 26,2 -0.01 -0,03

23.346 0.6 13.1 22,8 -0.00 -0.03

25.376 0.5 13.1 19.3 -0.01 -0,03

27.411 0.4 13.1 19.3 -0.00 -0,03

29.440 0.3 13.1 II.0 -0.01 -0.03

39.545 O.4 8.2 19,0 O.02 0_02

40.547 O.6 16.4 28.1 O.02 O.02

41.548 0.7 16.4 32.6 0.02 G.02

_2,549 0.8 16.4 36.4 0.01 0.02

43.550 0.9 16.4 40.3 O.Ol 0.02 t

44.551 0.95 16.4 41.8 0.01 0.02

56.631 0.9 9.8 23.6 0.06 0.01

57.632 0.8 9.8 _ 21.7 0.07 O.Ol

58.633 0.7 9.8 19.5 0.07 0.01

59.634 0.6 9.8 17.1 0.08 0.01

60.635 0.5 9.8 14.5 0.07 0.01

61.636 0.4 9.8 11.8 0.07 O.Ol

7_1.726 0.7 13.1 25.8 0.04 0.02

12,748 0.8 13.1 29.0 0.03 0.02

14
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PATTERN OF TYPICAL PRESTON TUBE
DATA FOR HIGH UNIT REYNOLDS NUMBER

iii i i i

M=o= 0.60

(Rem)=o= 16A X 106 ORIGINALPAGEISOF POOR QUALITY.

qoo= 28 k Pa
0.65 > h/_ > 0.50

IOcrn=X_; X _<-Xt =20cm
-L

I iqllr{ _ 4
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PATTERN OF TYPICAL PRESTON TUBE
DATA FOR LOW UNIT REYNOLDS NUMBER

, mm

M=o= 0.90
ORIGINALPAC,_i'J

(Rern)_ = 9.8X IOB o_POORQUALITY

q_, = 23.6 kPa

i"' 0.40 > h/B > 0.34

2Ocm=X__<X _<-Xt = 3Ocm
i

FULL'_

i- I .I.T-URBULENT II LAM!N.AR ,#_" I

I I "
I
I
I
I
I
I
I

X_ Xt XT , !

X, DISTANCE ALONG SURFACE OF IO° CONE

1-i (1u_'e 5
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•- ._v ....d d_W ::'pv_ = Kef f 4 dx" Keff

Prozorov claims this is valid in laminar, transitional and turbulent flows
t

.. providedthe probe height is within the viscous-sublayer.Accordingto

,i Eq. (13),_ = fn(Rd) if and only if Keff is also and the pressuregradient
is negligible.

It was decidednot to use Prozorov'sequation [_w_= Tw (Rd, Keff, dPw/dX)]
for the developmentof a correlationof laminarPreston-tubedata for the

followingreasons.

I. It was not expectedthat the-probesused in the subjecttests

would always be within the viscoussublayer.

2. For efficiency,it is desirableto have a common procedurefor

analysisof both the laminarand turbulentdata. Use of the

classicallaw-of-the-wallleads to a procedurewhich is applicable

to both types of flow; provided pressuregradientsare small.

3. The static pressuregradientsalong the cone surfacewere known

to be small, and Patel'swork_5 definedthe errors to be expected

when using_calibrationsof Prestontubes, based on the law-of-the-

wall, in turbulentflows with small pressuregradients.

Thus, for analysesof the laminardata, it was decidedto use the basic cor-

relationsparametersutilizedby Pate] and Allen for turbulentwall-flows.

Computatio9of BoundaryLayer and Data Analysis

The distributionof static pressurealong the surfaceof the sharp cone

at subsonicspeeds is assumed to be defined by the inviscidtheoryof Wu and

Lock.2_ Predictionsfor pressurecoefficientalong the surfaceof a ]O-degree

cone are shown in Figure 6 as a functionof freestreamMach number. This in-

formationand the known tunnel freestreamconditionsare used to calculate

flow conditionsalong the outer edge of the boundarylayer. The conical

laminarboundarylayer is then calculatedusing a computerprogramdeveloped

at StanfordUniversityby Crawfordand Kays2s which they have labelledSTAN-5.

The resultingdistributionsof laminarskin frictionand boundarylayer pro-

pertiesare then matchedwith the correspondingvaluesof surface- Pitot ]
measurements,

It was arbitrarily decided to only use Preston-tube data at I/2 in.

intervals beginning with the nmst forward station at which data were obtained.

17
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This resulted in a total of 148 data pointsalong the cone at the various

M and Rem listed in Table I. The followinglinear equationwas first used

to correlatethe Preston-tubemeasurementswith the correspondingvalues of

theoreticalskin friction.

Y* = A X* + B T* + C (14)

where

Y* _ loglo (T y2 /p v 2) : log_o (U (15a)W- eTT W W Yeff/Vw)2

X* _ log_o (Up Yeff/Vw)2 (15b)

T* _ toglo (T'ITe) (15c)

Yeff = Keff h/2 = 0.65 h (15d)

The referencetemperaturewas introducedto accountfor small departures

of the fluid propertiesp and v from the wall values. The coefficientsA,

B, and C-were determinedby a least-squaresfit of the data. This resulted

in the followingsemi-empiricalcorrelation.

Y* = 0.655X*+ 2.095T*- 0.895 (16)

Z* - 0.895

A plot of Eq. (16) is presentedin Fig. 7 along with the indi_d-dualdata

points. The correspondingdifferencesin skin frictioncoefficientare shown

in Figure8. The rms value of Cf z (Cf,t - Cf,c)/Cf,t is 6.7%.
Next,anequationquadraticin X* was tried. The resultingcorrelationis

Y* = 0.273(X*)2 - 2.618 X* + 1.645T*+ 8.92 _ (17)

A plotofthis equationand the associateddata are shown in Fig. 9. The

correspondingCf is presentedin Fig. lO. When the correlationparameters

of Allen (Eq. I0) are used to fit the same data, the rms value of Cf is 8.6%.

Thus, the parametersdefined in Eqs. (15) appear to be superiorfor correlating

this particulardata. An examinationof Fig. 10 revealsthat the data in

the upper left-handcorner is separatedfrom the majorityof the data. These

six data pointscorrespondsto Run No. 57 (M = 0.80, Rem :_SxlO_). When they are

deleted,the rms value of Cf is reducedfrom 6.7% to 5.2%. Finally,the seven
data points,which form almost a verticalline on the left of Fig, 9, correspond

g

to Run No. 72 (_, : 0.80, Rem :13x106). When these points are also deleted,
the correlatinnbecomes

19
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LINEAR CORRELATION
3.5

7
Y_ 3.1

.= L_

•, 2.9__--2,7
i. 3.6 3.8 4.0 4.2 4.4

==i:

_ Y* = Z_ -0.895

Where

Z* = 0.655 XK'+ 2.095 tOglo(TI/Te )

Yeff = 0.65 h
;!_) Figure I.
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SCATTER OF SKIN FRICTION
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Y* = 0.0942(X*)2 - 0.438X*+ 2.023T*+ 2.272 (18)

The associatedrms value-ofCf is 4.93%.
These resultsare good comparedto the correlationof Allen_8 but are

rather large comparedtothe very small scatter(= I%) of the correlationsfor

incompressibleflow of Patel (Eq. 3) and Quarmbyand Das (Eq. 9). Although

greaterscattermay be expectedfor compressibleflows,somewhatless scatter

is expected-for a correlation__fthe subsoniccone data becauseerrorsassoci-

ated with floating-elementbalancesare not presentas they are in the data

consideredby Allen. Thus, the questionarises: how can the data be better

correlated? This led to a reexaminationof.the data and the developmentof

a_ improvedcorrelatiomwhen Keff is treatedas a variable. The detailsof
this second-analysisof the wind tunnel data are discussedin the next section.

?4
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Ill. REANALYSISOF WIND TUNNEL DATA

USING VARIABLE Keff

Reexaminationof the papers by McMillan,_B Patel,_6 and Quarmbyand

Das.7,2_ led us to concludethat, in general,the effectivecenterof a

Pitot tube is a functionof:

Keff = Keff (U_h/v,Yc/h, w/h) (19)

In the case of a Prestontube, Yc/h = 0.5, and aspect ratio (w/h) is a

constantfor a given probe. When these restrictionsapply, Eq. (19) re-

duces to Keff(UTh/v). Since, in general,wall shear stress is a function

of Reynoldsnumber,pressuregradient,Mach number and heat transfer,we

can expect Keff for a given Prestontube to also be a functionof these

varJables. If this conclusionis true, it is necessaryto interpolateKeff
from the STAN-5 boundary-layerprofiles. This has been done by finding

the positionwithin the theoreticallaminarprofilesat which the total

pressureis equal to the measured Pitoto pressures. Table II providesa

summaryof the resultsfor each wind-tunnelflow condition.

It may be noticedthat only nineteencases appear in Table II as com-

pared with twenty one in Table I_In the processof tabulating (Cp)rms,it
was discoveredthat the exact flow conditionsfor Run Nos. 27.41I and 39.545

were in doubt. After a brief attemptto ascertainthe correctvalues it

was decidedto drop these two cases-fromfurtherconsideration.

In additionto Keff and Pp, Table !I also includesnoise measurements

of (Cp)rms as obtainedwith a 0.635 cm microphonemounted flush with the

surfaceof the cone at a distance45.7cmaft ofthe nose and 135 degrees

around from the Prestontube. As discussedin the introduction,Dougherty

and FisherB have correlatedboundarylayer-transitionwith this type of noise

data. Thus, it is anticipatedthat this data will be relevantto the defini-

tion of an "effective"unit Reynoldsnumber for the ll-ft TWT.

25
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Tilemethod used to define Keff has the effectof adjustingthe height

above the wall at which Pp is measured. This procedureis expectedto lead

to an improvedcorrelationbetweenPp and Cf becausethe Preston-tubepressure
i is forcedto be consistentwith the theoreticalboundary-layerprofileand skin

_,L friction, llowever,a high or low value of Pp and Keff for a given value of Cf
and h leads to a numericallydifferentrelationshipbetweenX* and Y*. Higher

L valuesof Pp producea more nonlinearcorrelation.

i' In order to make this point apparent, it is helpful to see a representa-tive graph of the axisynBetric laminar boundary layers in standard law-of-the-

wall coordinates,i.e., u+ vs. y+. Three typicalvelocityprofilesare shown

in Fig. II for M = 0.60 and three differentunit Reynoldsnumbers. The key

observationto note from this figure is that Yeff UT/Vw is _ 35,_andat this
heightthe normalizedvelocityu+ is only 7% below the linear relationu+ =
+

y . When a Prestontube is completelysubmergedin this linearregion,Patel_6

has shown that a linearrelationbetweeny* and x* results,e.g., see Eq. (4).

As the probe height increasesand/or boundarylayer thicknessdecreases,the

relationbetweeny* and x* becomesmore nonlinear,e.g., see Eq. (3). Im the

case of the subjectdata, a relativelysmall nonlinearityis expected. J

The above discussionof how a correlationis influencedby high or low 1

valuesof Pp, naturallyleads to the questionof accuracyof the measured I
pressures,and how can erroneousdata for a given wind-tunnelconditionbe I

identified? This can be qualitativelyassessedby comparingthe corresponding !

valuesof Keff for a particularcase with the _istributiono_ Keff_fer the 1

majorityof the data.** For this purpose,Keff has been plottedas a function

of UTh/vw, M and Rem and is shown in Fig. 12. It is relevantto here note

that the slightlyfavorablepressuregradientsare negligibleover the range

0.09 < X/L < 0.26 for which laminarPreston-tubedata are available,see Fig.

6 and Table II. Thus, the systematicvariationsin Keff are apparentlycaused
by changesin flow about the face of the probe_ith changes in: (I) Reynolds

number, (2) Mach number, and (3) tunnel freestream disturbance levels. -These

variations in effective probe height must be properly accounted for if a single

correlation equation, with constant coefficients, is to be uniformly Nalid

with respect to Mach number.

The variations of Keff, shown in Fig. 12, show that-the effective height

of a probe decreases as Uzh/v w increases and/or Mach number increases. In

either case, the pressure difference APp _ Pp - Pw increases. Since U h/v w
increases as a given probe moves forward toward the nose, it is obvious that

**Here"-we assume-th-e-b_k- o-{the-data provides a val i d reference.
30
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APp will increase also. i' In the case of Mach number it is not quite so

obvious that APp increases with M . In order to illustrate this phenomena,
Fill. 13 presents the effect of M_ on the distributions of total pressure

across the calculated laminar boundary layers on a I0 ° cone. Here, we see

that for a given wall shear stress the total pressure increases with Me .

This is true for approximately the inner half of laminar boundary layers.

Based on the theoretical boundary layer calculations and the given probe

height (0.0246 cm) used during these wind tunnel tests, the range of the

ratio of probe height to boundary layer thickness is 0.34 < h/_ < 0.77.

However, the effective height varies in such a way that Yeff/_ is always less

than 0.5. In fact, for the three cases shown in Fig. 13, Yeff/6 is _ 0.32.

The individual values of Yeff/6 and APp are listed in Table III.
The above described effects of Mach number have also been observed by

Bradshaw and Unsworth 2_in their analyses of data for supersonic, flat-plate,

turbulentboundarylayers. In addition,the fact that the effectiveheight

of a probe is less than the actual heightexplainswhy Allen's28Preston-tube

and turbulentskin frictiondata for supersonicturbulentboundarylayers

appearedto follow the logarithmiclaw-of-the-walleven when d/6 was as large

as 0.70.

Only two subsonicwind-tunnelconditionswere repeated,viz., M = 0.7

and 0.8 at a Reynoldsnumber of 13 x lO°. Comparisonsof Keff for each of

these cases indicatea differenceof 0.075 for M = 0.7 and 0.15 for M = 0.80.

These differencestranslate,respectively,to differencesin measured pressure

of l.l kPa (0.16 psi) and 2.3 kPa (0.33 psi). Since the full-scalerange of

the pressuretransducerused in the probe is 34.5 kPad (5 psid), the corre-

spondingpercenterr..tsin pressureare 3.2% and 6.6%, respectively. These

valuesare a measureof the repeatabilityand precisionof the Preston-tube

data.

Since the distributionof Keff for a given Mo is expectedto be contin-
uous, the discontinuitiesbetweenthe data for unit Reynoldsnumbersof 9.8

and 13 are also a measureof precision. The ll-Ft TWT was shut down between

the runs for differentunit Reynoldsnumber,and individualMach number

cases were run in the order listed in Table I. However,there were two

exceptionsto this order. The tunnel was startedfor run numbers 44-47 and

was shut down after wards. The second exceptionoccurredfor run numbers

*OnTy_data_frb_(_m n-umBer'-'44is being used in this work.
.L

'ThePreston-tubemeasurementsof Prozorov_ for incompressibleflat-plate

boundarylayers also exhibita decreasingeffectiveprobe heiqhtwith

increasingU h/\,w, when U h/\,w is less than 100. 33
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70 (M. :_0.1, Re.m ::13 x I0u) and 72 (M, :_0._, R% : 13 x lO_) which

win'() Imrforme(I at a hi(lher unit Reynolds number imnmdiately after tim

preceeding runs (56-61) for a lower Reynolds number. Thus, for these

two ru_s, it is stlspectedthat the pressure transducer was bein_l

influenced by u_steady temperatures and may not have achieved an

e(luilihriumLemperature. This phenomenon may have also contrlbuted

to errors in pressure measurement for other cases. For example, the

Kef f for run number 44 (M = 0.95 Rem = 16.4 x lO_) appear to be low,

Using the entire 136 values of Kef f, shown in Fig. 12, a
correlation between Preston-tube pressures and theoretical, laminar

skin friction can be calculated. The equation obtained from a least-

squares fit of a quadratic to the data is

Y* = 0.0174(X*)_ + 0.3274 X* - 0.0392 T* + 0.4333, (20)
for 5.4 < X* < 6.3 and M < l.O.

The rms error in Cf, c is now 0.90%. This amount of scatter is
comparable to the pipe flow calibrations of Patel l_ and Quarmby and

Dasl l,.._

However, the lack of continuity between the Kef f data for Rem = 9.8 x 10"
and the rest of the data is of concern. A reexamination of the data

sheets for this Reynolds number indicate some confusion as to the correct

_lain factor for the X-Y plotter. For example, on the Preston-tube data

sheet for Run No. 56 (M. = 0.90, Rem = 9.8 x lOt'), the listed gain factor

is 0.2_9 psi/cm, Use of this gain factor results in a Preston-tube pressure

hi(her than freestream total pressure! A review oE the tunnel testing

procedure led to the conclusion that Runs 56-61 should be shifted so that

the distribution of Keff for Run No. 58 (M = 0.70, Rem = 9.8 x IOT.)

fm11!sa continuous curve with Run No. 21 (M = 0.70, Rem 13 x I0_)
In addition, Runs 70 and 72 were shifted, as a group so as to align Run No. 70

with R_m N(_.Ll. A plot oF the revised Keff are shown in Fig 14i. The

correspnndiml correlation is

-- Y* = -0.0136 (X*)" + 0.I051 T* + 0.6669,

for 5.4 • X* • 6.3 and M • l.O. (21)

The {m'v(,_,,which appear in li(l.14, will he discussed in the following

_mtion on ana)yse_ ()1 fli(#lt data.

L
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This equation is shown in Fig. 15 with the individual data points superimposed.

The rills error in Cf, c is now 0.97%, and the individual values of Cf are
presented in Fig. 16. Equation (21) is considered to be our best estimate

of a correct correlation for the ll-Ft TWT.

It may be noted that tile contribution of the T* term is very small because

the temperature ratio T'/T e is near oqe and the log of 1 is zero. This
simply indicates negligible departures of density (p) and viscosity (_) from

values based on wall temperature. In anticipation of the need to compare the

wind-tunnel correlation wlth a correlation based on flight data, it is obvious

that such a comparison will be easier if T* is dropped. Upon doing this and

refitting the data, the following simplied correlation is obtained.

Y* : -0.0103 (X*) 2 + 0.6653 X* - 0.5946, (22)

for 5.7 < X* < 6.3 and M_ < I.

The rms error in Cf, c has increased only slightly to 0.98%. Equation (22)
is plotted on Fig. 17 and is compared with an analogous correlation for the

unmodified wind tunnel data. It should be noted that the small increase

in n_s error of Cf, c , relative to the unmodified data, is caused by the fact

that a given d_fference in Kef f leads to a greater difference in Preston-tube
pressure as the height above the wall is increased, recall Fig. 13.

It is here emphasized that the numerical values of Kef f and the

coefficients in Eqs. (21) and (22) are valid only for the Ames ll-Ft

TWT and the particular probe used during these tests. The numbers are

expected to be different for different wind-tunnel environments and for

probes with significantly different aspect ratio and/or face geometry.

In particular, the coefficients are believed to contain information on the

freestream disturbance levels which are peculiar to the ll-Ft TWT. With i

the attainment of this objective, a-corresponding analysis of the

flighL data was begun. This is reported in the next section.
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IV. ANALY£1SOF FLIGHTDATA

The AEDC-BLTCone was m(_untedon the nose of a McDonnell-Douglas

I:-15aircraftfor flight tests".,_ Althoughthe cone apex was over 2m(:

7 Ft)aheadof the aircraftnose, it was recognizedthat Lhe flow field

about the aircraftcould influenceflow about the cone. Hence, it was

necessaryto obtainmeasurementsof static press'Jredistributionalong

the cone by ml_ployinga facsimilecone. This cone has the same exterior

dimensionsas the BLT Cone but was constructedsn that interchangeable

insertsin the wall perlnittedmeasurementsof eitherstatic pressures

or wall temperaturesalong the surfaceof the cone. The insertsfor

staticpressuremeasurementshad an orificewith an insidediameter

of 0.I07 cm (0.042in.) Table IV lists the locationsof these orifices

along tilesurfaceof the cone.

Most of the flightdata were obtainedfor nonzeropitch and/oryaw.

Since we are unable to calculatenon-axisy_etric boundarylayerswith

STAN-5,only the cases havingnegligible(_and 6 were selectedfor

developmentof a Preston-tube/skinfrictioncorrelation. A_totalof

nine cases were identifiedas havingboth _ and 6 of the order of O.l

degreeor less. A sumnaryof the selecteddata is tabulatedin Table V.

The numberingsystemused to_designatethe variousflightsis-as follows:

XXX YYYY

Flight Time of
No. Day

The listedvaluesof freestreamMach number,unit Reynoldsnumber,dynamic

pressure,_nd pitch and yaw anglesare the time-averagedvalues based on the

I_lea:_uredconditionswhich existedduring the time the Prestontube was

within1the laminarboundarylayers.

4_
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TABLE IV

PRESSURE INSTRUMENTATION ON FACSIMILE CONE

(a) SurfaceDistributionof Stati_Orifices

Orifice XIin.) X/L @(DEG_

l 7 .l57 180

2 16 .360 O

3 17 .382 0

4 19 .427 0

5 20 .449 O

6 21 .472 O

7 22 .494 O

8 25 .562 O

9 26 .584 O

IO 27 .607 0

II 28 .629 O

12 29 .652 O

13 30 .674 0

14 30 .674 90

15 30 .674 180

16 30 .674 270

17 31 .697 O

18 32 .719 O

19 33 .742 O

20 34 .764 O

21 35 .787 0

22 35 .787 180

(b) DifferentialPressures

Orifice X(in.).......X/L .... _ ...............

18, O-18O* 18 ,404 O & 180 - pitch plane

18, q0-270 18 .404 90 & 270 - yaw plane

*Note: Leaky Transducer-Unusuable
43
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'[hefirst step in calculatingthe boundarylayers for the flighL

data is to use the measurementsof static pressurealong the facsimile

cone to define theinviscidflow field. Particulardata from flight tests '

of the facsimilecone were selectedto match the values of freestreamMach

numbers listed in Table V within±0.005. The distributionsof Cp(X) were
then used with the values of q_, listed in Table V, to calculatestatic

pressuresalong the surfaceof the BLT Cone.+ In the flight-testreport

I by Doughertyand Fisher_s, they state that the staticpressure is nearly
constantalong tilelengthof the cone. However,the staticpressure

data we were given has significantscatter. Figures 18 and 19 show,

respectively,a typicalfavorableandanadversepressuregradient.

In light of this apparentlyrandom scatterand the commentsof Dougherty

and Fisher,a simple straightline was fit to the data for each of the

nine flight conditions. The associatedrms errors i_C are listed in Table VI
P

and range from 4 to 6%. Comparisonsof the in-flightfacsimilecone pressures

with the theoreticaldistributionsof Wu and Lock, Fig. 6, indicatethat the

effectof the airplane is to reduce the favorablepressuregradients

which exist on an isolatedIO-degreecone.

The effect of orifice-inducederrorswas estimatedusing the method

of Franklinand Wallace.3° The increasein measured static pressure,due to

flow dipping into the 0.I07 cm (0.042 in.) orifices,was estimatedfor two

cases: (l) a laminarboundary layer at X = 17.8 cm and with flow conditions

correspondingto Flight #327.0908++ and (2) a turbulentboundaryat X = 48.3 cm

with the same freestreamconditions. In both cases, the calculatederror

in static pressurewas less than 0.1%. Thus, orifice-inducederrors

appear to be negligible.

However,the facsimilecone pressuresdo need to be correctedfor

differencesin pitch and yaw angles. This need arises becausewhen Mach

numbersof flight tests of the facsimilecone and the BLT Cone are

matched, the values of _ and B do not match. A correctionfor these

differencesin pitch and yaw angles can be calculatedvia the Wu and Lock

+This is consistentwith the Wu and Lock theorywhich states:C p =
i_ fn(Mo,,Cone anqle,_, _, X/L). ]

Ii '++Withinthe range of freestreamconditionslisted in Table V,this :
correspondsto the lowestMach number for which static pressureswere
measured,and thus the thinnestboundarylayer exists for thiscase.
However, in retrospect,the flow conditionsfor Flight No. 333.1351should
have been used because a larger_w results,and orifice-inducederrors
increasewith iw. 47
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I le{)ry. ]1) t)articu]ar, (:p(X) can be calculated along tile location of
the lh'(_stOll-tuhe trav(n'se (,_-:0") for each I' measured during tests of tile

I',l(:silliile trine and lhe I_l.1 Cone. In the c,lse ot: the lILT Cone, the tillle-.

avera¶led value o| I', duYing tile )line tile Preston-tube was within the

lalllilh%r botllldary layer, is used for tile theoretical calculation of Cp

(M,, r, X/l.). Tiley-intercepts of the straight line curve fits of the

facsimile cone pressures are then increased or decreased according to the

difference between spatially-averaged (over length of laminar boundary

layer) w_lue of Cp for the BLT Cone and the corresponding Cp calculated

For the facsimile cone at the same M but different r, i.e.: letting

(Cp)FC :mx + b,

'C =
then t p)FC,Corr mx+ b + Cp(Y for BLT Cone) - Cp(r for FC) (23)

The resulting equations are tabulated in Table VI. It is relevant to

note this procedure assumes the differences in static pressure distribution

caused by differences in angles-of-attack are not influenced by the F-15

aircraft.

lhe measured wall temperatures, tabulated in Table V, were obtained

with a sin(lleflush-mounted thermocouple at x = 90.2 Clnand @ = 180 degrees.

Since this location is always within the turbulent boundary layer and the

subject of this work is laminar boundary layers, it was decided to estimate

what thecorresponding wall temperatures should be under the various laiiiinar

bouedary layers. This can be done by multiplying the measured Tw by the

rdti(b(_;f the laminar over the turbulent adiabatic wall t_nperature. A

turbulent "ecoverv factm" of r 1 _ 0.}_B25and a laminar recovery factor of

:" O.J4,,were selected because they are average values based on data from

,_.,s of cones, e.g. Rohsenow and Choi_s. The local edge Mach number at

')'' Cp .
x _ t., c,lis coml)utedbased elithe corrected (X) distribution ll)ra given

srt _i lli,ihtdata, Talqe VI. A laminar value for Ne is obtained us)nilthe

spali,)I)y-av(,ra_ed value {if C over the le_lgth of the measured laminar Preston-
P

tube data. Tile m{,asured wall temperature is then multiplied by the ratio

(Iiw) /(Taw){ in order to arrive at the tel,peralures listed in Table V. As
may b_, <_een, tile wall t(,mperatures generally decrease by only 2°F.

-'-" At this poiilt,sufficient ]nf'emat)on exists in order to proceed with

l,,mldat!,'hl)'erv_mH_utationsfor the nine fllght conditions. Tllis,of course

_,,_d,m, u,;inqtileSTAN-5 Led{. The resulLiml theoretlcal bouldarv layer

!_t)
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prt_I-ilt,scan thnn be usf,d ill(:Olljtlncl,i(_nwith Pr(_ston-tubepr_:sstlresto

define effective probe hei_lhts. A typleal trace ()I:Prestnn-tube pressure

is shown in Fiq. 20. The scatter illthe laminar partiun (IflJleImundary

layer can be eliminated by hand fairing a curve thruuqh tilemeasured pressure,+.

This has heen done for all nine flight _:unditions.

Using values of the faired Preston-tube pressures, at intervals of

1.27 cm {0.5 in.), a total of 87 values of Keff were cJ]culated. These

are listed in Table V and are plotted in Fig. 21 as a function of

U.th/\,w. This figure reveals that the semi-empirical values of Keff are
mutually inconsistent, and values greater than two are suspected of being

erroneous.

IIowever,before attempting any corrections, it is instructive to

derive a correlation based on the unmodified data and then to calculate the

corresponding effective unit Reynolds numbers for the ll-Ft TWT, Before

doing this the distributions of Keff, shown in Fig. 21, were fit with
exponential equations to further smooth the data and facilitate the

corrections which will be discussed later. These equations are listed in

Table VII.

A least-squarescurve fit of a quadratic correlation to the laminar

flight data. based on the smoothed w_lues of: (1) Cp(X), (2) Pp(X), and

(3) Nef f, resulted in

Y* = 0.0915(X_)"- 0.5846 X* + 3.2259 , (24)
for 5.8 < X* < 6.4.

A qraph of this equatiou and the associated data are presented in Fig. 22.

Tim corresponding values of Cf are shown in Fig. 23. The rms error in

Cf,[ is 0.56%. This reduced scatter, compared to the wind tunnel data,
is ,or only due to the use of smoothed data but also the fewer number

t)I.individual data points and the smaller range of freestream conditions.

This identifies a deficiency of the method for calculating Keff which
) • . 1f()rc(,sth()measured Prest()n-tubel_essures to be consistent with the

the(w(,ii{al_olutiv,s of the conservation equations for the boundary layer.

This in'(_cechn',_ result_ in values of X* and Y* for the high values of Pp to

a!Ireuwith and correlate with the rest of the data, Only the plot of Keff

ptMnI_ to a possible problem with some nf the measured flight data.

lhe cxwrelati(m lor the unmodified fli(lhtdata, Eq. (24), is
. ,_,)

ct_l,I,,wedwi(h the torrelaIion for the shifted wlnd-tun,el data, [.q.(,,_),

in l i,i./4. lhe two correlations cross near X_ --5.77, which is outside

I
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tilerangeof the flight data, and a maximum differenceoccurs near X* ::6.05.

The wind-tunnelcorrelationis above the fliqhtdata correlationover the

ranqe of the flight data. This is consistentwith the fact that far(for

disturbances are presentwithin a transonicwind tunnel. The difference

i : , betweenthe two correlationscan be used to define an effectivefreestream

_" unit Reynoldsnumber, A descriptionof this procedureis given in the

i followingsection.
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V. COMPARISONOF CORRELATIONSAND CALCULATIONOF

At_EFFECTIVEFRFESIREAMUNIT REYNOLDSNLIMBER

A. _Un!_1o(!!.ti.ed__:!.ight" Data

In analogyto the classicaldefinitionof effectivefreestreamReynolds{
numberbased on equal values of drag coefficientsof a sphere,one can use

;L Eq_. (;_2)and (24) to accomp|ishthe same objectiveby equatingvaluesof skin

frictioncoefficient. This procedurerequiresthe followingset of conditions

i be specifiedat a point on tl_econe.
i. Fre_streamconditions:M,.,q_,,Rem

2. Inviscidpressure

3. Preston-tubepressure

4. Yeff
5. Wall temperature

These conditionspermitcalculationof numbersfor all the variableswhich

appear in X* and Y*, except Cf. If these values are used in the cor.relation

for flightdata, Eq. (24), a supposedlyinterference-freevalue of laminar

skin frictioncoefficientis obtained. Now when this value of Cf and all the

other specifiedvariables,except Rem, are substitutedinto the wind-tunnel

correlation,Eq. (22),an "effective"freestreamunit Reynoldsnumbercan be

ca]cu]ated. For given freestreamconditions,the effectiveReynoldsn_Jmber

shouldbe independentof X. The only restrictionis that the appropriate

valuesof Pp, Pe, Yeff and Tw be used for a given X. However,small
variationsare found to occur with X simplydue to inaccuraciesin the data-

and the correlationprocedure. These small variationswithin a given traverse

were eliminatedby averagingover X. This has been done for all of the 19

wind..tnnnelcases, and the resultsare presentedin Fig. 25.

Surprisingly,the calculatedeffectiveunit Reynoldsnumbers are only

abot_t7.5g largerthan the valuescalculatedby traditionalmethods. These

r_,suItsare surprisingbecausethey are much smallerthan those suggestedby

Reynr}]dsnumbersbased on the distanceto the end of transition. For example,

d.JLafor the 11-FL TWT is presentedin Fig. 26 which suggeststhe effective

Reynot,lsnumberat M ; 0.80 shouldbe of the order of 35% largerthan the

nor,,_1traitReynoldsnumber. Also, since (Cp)rms peaks at M o-_0.I0 in the

ll-FtTWT, _s shown in Fig. 27, and ReT is approximatelyproportionalto

(%)rms (seeAppendixA), it appearsreasonableto expect (Rem)eff to also

[)P;_knear {4 = 0.70. This type of behaviorwas anticipatedbecauseany

diff,_rencesbetweenthe wind tunneland f]iclhtdata are assumedto be due to

wind-.tunnel-e,vh'()nmenteffectswhich were not inc|udedor modelled in the

60
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data analy!_!s,viz., noise and freestreamturbulence. All of this suggests

that wind-tunnelnoise alters the !_ver_aj_Lelaminarskin frictionsignificantly

less than it floestransition.

However,beforeacceptingthis conclusion,we must resolvethe question

whether the semi-empiricalflightvalues for Keff (Fig. 21),whichclearly

point to erroneousdata, have any significanteffect on this conclusion.

Thus, the questionarises: Is there a rationalprocedurewhich can be

employedto correctthe Preston-tubepressuresmeasuredduringthe flight

tests and therebypermitthe calculationof more correcteffective unit

Reynoldsnumbers? The followingsectiondiscussesour search for such a

procedure.

B. SearchFor A Procedure.to CorrectFlight Data

If we assumeKeff should be less than_two,the conclusionsfrom Fig. 21 is
that the data for M,_,= 0.85, 0.86, 0.74 are too-b-tgh.The sourceof these

errors is unknown. The level of Pp for M_ = 0.85 and 0.86 would need to be
reducedby approximately2.54 kPa (53 psf) in order to reducethe largest

value of Keff to 2. In the case of M_o = 0.74, Pp would have to be reducedby
2.39kPa (50 psf) in order to match the pressuremeasuredfor the case M_ =

0.75.

In additionto levelof pressure,there are at least three other

variabieswhich must be considered.Firstly,the data is expectedto follow

the wind-tunnelpatternof decreasingKeff data with increasingM,,.,and

secondly,orderlyspacingbetweenindividualcases is expected. Thirdly,in

any attemptto correctthe Keff data, one must decide if the measured

differencesin Pp for a given traverseare valid or not. If the errors in Pp
are caused by zero shifts in the transducerread-outequipment,,it would

_. normallybe correctto assume zero drift was negligibleduring a given
traversew_ich requiredlessthan a minute. However,even the differencesin

_" Pp f()rthe varioustraversesdo not agree, see Fig.-2-L.For example,the

total diffurencein Pp between40.6 cm < X - 50.8 cm of FlightNo. 329.1036

(T4. --0.74) is 0.618 kPa (12.9psf); whereas,the correspondingdifference

for Fli_lhtNo. 349.1400(M _-0.75) is 0.551 kPa (11.5 psf). As shown on
'T

Fi_l.21 and in Table V, there;are no significantdifferencesin unit .Reynolds

_i ,_L,,nhe,-,_,"f,'_estre,,mdynamicpressure. In summary,there does not appear to
b_,._(:onc.enstason either level or distributionof Preston-tubepressures!

i_L The first attempttu correctthe vah,esof Pp, measured duringflight
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tests, is based on the ideathat the flightdata and the wind-tunneldata

: have a common asymptoticvalue of Keff as R_,_, and tilePrestontube moves
to the tip of the cone and out of the boundary layer. This requirementcan he

imposedby using the exponentialequationdevelopedfrom a least-squarescurve

': fit of the wind-tunnelvaluesof Keff betweenM = 0.6 - 0.95 (see Fig. 14)

and the equationsof Table VII. The wind-tunnelequationdefinesthe

:_ asymptoticvalues of Keff to be given by 0.655 (1-M_)0.173when UTh_ w _ _.

•_ This equationis then used to define new values for the additiveconstants,

i _ which appear in Table VII, by insertinga given flight Mach number. Theresultingmodifiedvalues of Keff are plottedin Fig. 28. Now the Keff are

much lower but the order of the curveswith respectto M=is still incor-

I rect. The correlationwhich resultsfrom use of these values of Keff is
i,

Y* = - 0.00016 (X*)2 + 0.5054X* - 0.0194 • (25)

This equation is plotted in Fig. 29 and is comparedwith the shifted

wind-tunnelcorrelation,Eq. (22). The associatedrms error in Cf,c is now

0.15%. This extremelylow error in Cf is caused by the close proximityto the

wall. In this region,total pressurewithin the laminarboundary layers is

relativelyinsensitiveto changes in Keff, see Fig. 13, and the corrected

valuesof Pp are approximatelyequal to Pw" This results in nearlyconstant

valuesof Pp and is consideredto be invalid. However,the corresponding
effectiveReynoldsnumbersvary nearlymonotonicallyfrom a maximumof 18%

above the normal Reynoldsnumber for M = 0.30, Rem = 13.1 x 106 down to a

minimumof 4% at M= = 0.90, Rem = 9.8 x IOs. A graph of these Reynolds

numbers is presentedin Fig. 30.

In light of the above inconclusiveresults, a secondcorrectionpro-

cedurewas investigated. This secondprocedure is based on the assumption

that the effectsof freestreamturbulenceand noise on the measured laminar

Preston-tubepressuresare a minimumat the beginningof boundary layer

transition. This, in effect, assumesthe flight and wind tunnel values of

Keff are equal at Xt for a given R T and Mo,.This then leads to use of the

asymptoticcurve fit of the shiftedwind-tunneldata, Fig. 14, to calculate

Keff(Xt). The theoreticalvaluesof R_ _ U_h/vw at Xt are substitutedinto

- Keff = 2.865e-°.°2_3R + 0.655 (I-M2)o.i_3 (26)

for the nine differentflights. The differencesbetweenthese new valuesof

Keff (Xt) and the originalflight values definesan incrementwhich was added

(or subtracted)from the completeset of Keff's for a given flight. The
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resultingcorrelationis

Y* = 0.1247(X*)2 - 0.9210 X* + 4.054B, (27)
for 5.6 < X* < 6.0.

This equatienis compared in Fig. 31 with the preferredwind-tunnel

correlation,Eq. (22). Unfortunately,the two correlationscross.

This resultsin effectiveReynoldsnumbersvaryingbetween6% above

and 6% below the normalReynoldsnumber. Thus, this procedureis

not helpful.

A third correctionprocedurefocuseson using the unmodified

values of Keff for FlightNo. 349.1400 (M = 0.75) as a referencefor
the rest of the fligbtdata. This case is attractivebecauseit appears

to have the most realisticvalues of Keff, i.e., 1.7 < Keff < 1.8. In
order to apply this assumption,it is necessaryto determine-bowthe

rest of the Keff data should be distributedabout this reference
case. This can also be done using the curve fit of the shiftedwind-

tunneldata, Eq. (26). Correctionsfor the three cases in the upper

left of Fig. 21 were calculatedby using the exponentialcurve fits

for each case (TableVII) to define a correctedKeff at a value of

R correspondingto the midpoint of the referencecase, M = 0.75...............
The correctionsfor the five cases on the right of Fig. 21 were

calculatedby using the exponentialcurve fit of the referencecase

to extrapolateKeff to an RT defined by the midpoint of each of the five
cases. The referenceMach number,0.75, and the five different values

of R were used_n Eq. (26) to calculatereferencevalues of Keff. The

five differentvaluesof R an___ddM were then used in Eq. (26) to define
"correct"differencesbetweenthese data and the referencecase. Each

of the calculateddifferencesin Keff were then used to shift the center

of the Keff data for the correspondingeight flights. This procedure
providesa more realisticspaciflgof the eight flightsabout the

selectedreferencecase. In addition,this time it was assumedthe

measureddifferencesin Pp for a given traverseare valid and should be

maintained. This requirementleads to a particulardistributionof Keff
about the shiftedmidpoints. The resultsare illustratedin Fig. 32.

The ratherweird distributionsof Keff are caused by the fact that Pt is a

functionof both x and y and the derivativedPt/dx changeswith shifts in
distancefrom the wall, y. The associatedcorrelationis

Y* = 0.0598(X*)2 - 0.1777 X* + I._28, (28)

for 5.64 • X* < 6.09 .
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ibiseqiJationIs shown in Fig. 33 along with the individualdata Points.

A ((_mihlrlsonhe.tweenEq. (2}i)and the preferredwind-tunnelcorrelationis

made in Fig. 34.

lhe small scatterof theoreticalskin frictioncoefficientabout values

computedfrom Eq. (28) is presentedin Fig. 35. The rms error in skin

friction(:oefflclentis ().37%which is less than the 0.97% scatterfound for

the shiftedwind-tunneldata, Fig. 16. It is revelantto here note that the

_(:atterin Cf generallydecreasesas Yeff decreases. This is illustratedby

comparingthe valuesof Keff shown in Fig. 28 with the highervalues of Fig.

32 and noting the lowerrms error in Cf,c of 0.15% as indicated-onFig. 29.

Thus, one can legitimatelyquestionwhetherthe flight data have been shifted

down too much toward the wall.

Beforeaddressingthis question,we need to first presentthe values of

effectiveunit Reynoldsnumberswhich result from using the two correlations

shown in Fig. 34. Valuesfor the nineteenwind-tunnelconditionsare shown in

Fig. 36. The maximumeffectiveReynoldsnumbersare approximately6.5% larger

than the correspondingstandardwi_d-tunnelvalues. These are about 1%-less

than those obtainedfor the unmodifiedflightdata, Fig. 25. The distribution

has only a vague resemblanceto the measurednoise curve shown in Fig. 27.

The two lowestvaluesof effectiveReynoldsnumber (-_1.04Rem) occur for

Me = 0.3, Rem = 13.1 X 10G and M = 0.9, Rem = 9.8 X lO6. Data.forboth of

these two cases departfrom the majorityof the data shown in Fig. 14. The

low Mach number case appearsto be too high and has values of Keff shifted

towardthe flightdata. The correspondingvaluesof X* lie between6.26 -

6.28. As indicatedin Fig. 34, the differencebetweenthe two correlationsis

less in this range of X* and this resultsin a smallervalue of effective

Reynoldsnumber. The high Mach numbercase appearsto have a slope dKeff/dRT

that is conspicuouslylarge. However,the primaryreason Rem,eff is small for

this case is that X* lies in the range 5.73 - 5.80. This correspondsto the

far Infl:of Fig. 34 where a smallerdifferencebetweenthe two correlations

also exists.Finally, we face the questionswhat happensto the effective

Reyn(_Idsnumbers if tileflight valuesof Keff are shiftedeitherup or down.

Tlliswas investigat{_.dby shiftingthe Keff data of Fig. 32 accordingtn the

fnll,)winqprocedure.The averageR rand the correspondingKeff was calculated

for the referencecase (M.,= 0.75) and likewisefor the other flight

c,,r_(Iitiens.Tiledata w_,rethen shiftedby arbitrarilyaddinga constant

in(:rei_}(,ntto each _)fthe avera_leKeff's. These new distancesfrom the wall

were then _isedtolocatea new value of Pp within the correspondingSTAN-5
h()un(larylayer at that streamwisestation. Tileincrementin Preston-

T_
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tube pressure_for a given flightcondition,was then added or subtractedfrom

all of the Pp fo_ that traverse. These new values of Pp were then used in

conjunctionwith the theoreticalprofilesto define new distributionsof Keff

and the associatedvaluesof X_and Y*. A new least-squarescurve fit of

these data providesa

new correlationequationwhich can then be used with the wind-tunnel

correlationto define a new set of effectiveunit Reynoldsnumbers.

The referencevalue of Keff = 1.72 was increasedup to 2.12 and was

decreaseddown to 1.42. The resultingdistributionof Rem,eff is presentedin

Fig. 37 for M_ = 0.80. This clearlyshows that the calculatedeffective

Reynoldsnumberhave a maximum of approximately1.065 Rem. Thus, we may

concludethat the procedureselectedfor correctingthe flight valuesof Keff

reducesthe maximum valuesof Rem,eff by about I% of Rem.
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CONCLUSIONSAND RECOMMENDATIONS

Analysesof Preston-tubedata, obtainedwith the AEDC TransitionCone

in both the ll-ft TWT and flighttests, have revealedthat these data have

errors. The errors in the ll-ft TWT data are relativelyminor and are

c_nparativelyeasy to correct. A satisfactorycorrelationbetweenthe

correctedwind-tunnelPreston-tubepressuresand theoreticallaminar

skin frictionhas been developed. The standarddeviationbetweenthe cor-

relatedskin frictioncoefficientsand the correspondingtheoreticalvalues

is 0.98%.

The errors in the flightdata were found to be more severe and a

great deal of effort was expendedin the search for a rationalcorrection

procedure. Three distinctcorrectionprocedureswere investigated,and

correlationshave been developedbased on each of thesemodified sets of

flightdata. The preferredcorrectionprocedureforces the flightdata

to exhibitsome of the orderlycharacteristicsof the wind-tunneldata.

The correspondingpreferredPreston-tube/skinfrictioncorrelation

exhibitsan ms error in skin frictionof only 0.37%.

The wind-tunneland flightcorrelationshave been successfullyused

to define"effective"freestreamunit Reynoldsnumbersfor the ll-ft TWT.

Based on the preferredrearrangBnentof the flightdata, the maximum

effectivevalues of Rem are approximately6.5% higher than the normal
tunnel values. This compareswith 7.5% which resultswhen using the

unmodifiedflightdata. The maxim_n effectiveReynoldsnumbersoccur

for Mach numbersbetween0.60 and 0.80 and for normal tur_nelunit Reynolds

numbersof 9.8, 13.1, and 16.4million per meter.

The distributionof (Rem)eff with Mach number only vaguelyresembles
the distributionof total noise intensityas measured in the ll-ft TWT

with microphoneson the AEDC Cone. Also, the values of (Rem)eff are low
for a given noise intensitywhen c_npared to the noise/boundary-layer-

transitioncorrelationof Doughtertyand Fisher8. Thus, we are led to

:- concludethatwind-t_mnelnoise effectsthe avera__e_laminarskin friction

much less than it effectsboundarylayer transition.

It is reconwI1endedthat the analysesused herein to developPreston-tube/

skin-frictioncorrelationsbe appliednext to the arlalysisof turbulent

boundaryl_yersand finallyto the transitionre,lionwhich is known from
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tl_e work of DOU_lherty,et a1.7'}_'27to be sensitive to tunnel noise. These

new (:orrelatiorlscan be used to define additional values of (Rem)eff which

can be Cuml)aredto values reported here.

Boundary Layer Transition Data

Date for the onset, extent, and end of boundary layer transition are

summarized and presented in a systematic fon1_in Appendix A. Boundary-layer-

transition data for the ll-ft l_ITappear to be correlated by the product

,._s In the range 0.60 < M < 0.95, this product is near 4 andReT(Cp) rills •
decreases rapidly as Mach n_iiberdecreases below 0.60.

Effects of Nose Radius

The effects of variations in nose radius on the transonic flow about

a cone are discussed in Appendix B. The radius of a hel_isphericalnose has

been found to have an il_pJ)r_ta_tand dominant effect on boundary-layer

transition and flow separation at supercritical speeds. Increasing nose

radius allows the growth of a thicker boundary layer prior to encountering

the transonic shock near the juncture of the nose with the cone._ This

promotes both earlier transition and laminar flow separation. An analytical

procedure i_asbeen developed to model this phenomena, and a comparative

study of the effects of nose radius, Mach number, Reynolds number, and heat

transfer can now be perfo_med.
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APPENDIXA

SUMMARYOF SUBSONICBOUNDARYLAYER

TRANSITIONDATA

il Wind TunnelData

ii_ The surfacedistancesfrom the nose of the cone to the onset (Xt)and end-of-transtion(XT) are tabulatedin Table A-l for twenty one
differentsubsonic,wind-tunnelconditions. The test conditionsinclude

i Mach numbersfrom 0.3 to 0.95 and free-streamunit Reynoldsnumbersof
3, 4 and 5 millionper foot. The extentof the transitionzone (AX), the

relatedratio XT/Xt,and the root-mean-squareof the fluctuatingpressure

coefficient[(Cp)rms]are also includedin Table A-l. (Cp)rms is based on
microphonedata taken with a I/4 in. diametermicrophonemounted flush with

the cone surfaceat-a.distanceof 18 in. aft of the nose. Data over the

frequencyspectrumbetween0.2 and 30 kHz were used to define (Cp)rms .
TransitionReynoldsnumbers,based on the productof free-streamunit

Reyno]dsnumberand the distanceto the end-of-transition,are includedbe-

cause this parameterwas initiallyused by Dougherty_ to correlatewith

(Cp)rms'
Whitfteldand Dougherty2_ have stated that a wide varietyof previous

i test data indicate the ratio of XT/Xt is approximately 2 and is nearly
V independent of flow conditions. However, the values of this parameter in

Table A-] range from 1.I0 to 1.23. There appears to be a slight tendency

for XT/Xt to increase with Mach number. As is shown later in Table A-2,

the flight values of XT/Xt also fall within this same range. Thus, the
value of two is not characteristic of these tests.

The effects of M and free-stream unit Reynolds number on Xt and XT
are shown, respectively,in Figs. A-I and A-2. The primaryresultsto note

are that the distancesto onset and end-of-transition(I) increasewith

decreasingReft, but vary only slightlywith M and (2) are smaller, i.e.,

occur closer to the nose, when _ = 0.70. This correspondsto the Mach num

_ ber at which (Cp)rms reachesa maximum in the Ames ll-ft TWT, e.g., see
Doughertyand Fisher.s In Ref. 29 , Doughertypresenteda correlationof

wind-tunneldata which indicatedReT = 3.7 x ]Os _ICp_rms'_"_5within _+20%.

Thus, ReT,fCp,rms_'2Sis plottedin Fig. A-3 as a functionof M,°in order to
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ascertainif this parameteris indeed independentof Math numl)er.For M,,

between0.60 and 0.95, an averagevalue of approximately4 x IOG app(_arsto

be a good correlation. In this Mach number range tunnel-generatednoise

reachesthe highestintensitylevels. As M decreasesbelow 0.6, the noise

level also decreasesrapidly. This rapid decay in noise is reflectedin

the decreasingvaluesof Re tc _.2s
, T,Vp,rmsas Mach number decreases. The data

suggeststhat this parameteris a unique function-ofM for the AEDC Tran-

sition Cone in the II-FT TWT. However,there is insufficientdata to supporl

a definiteconclusion.

The effectsof M and Reft on the length of the transitionzone are pre-
sented in Fig.A-4. The extenL-of-transitionappearsto have a local mini-

mum near_M = 0.70 only for the case Reft = 3 x IOs. The significanceof
this observationin unknownat-this time.

Before proceedingto discussthe subsonicflightdata, it is relevant

to note that wind-tunneldata were used to estimatecnrrectionsof Xt and XT
for flightcases whichhad nonzeropitch and/oryaw angles. FiguresA-5

and A-6 presentthe data £o_AX as a functionof F, the total angle-of-attack;

the correspondingvaues of Xt and XT were used to correctthe subsonicflight

data. FigureA-5 expressesthe data as a nondimensionalratio AXI./AXI_= 0 vs.

F, and Figure A-6 recastthe data in terms of (AXr - AXr = o)/L. The wind-
tunneldata were obt_ned from tests of the lO-deg cone in four different

tunnels. In all cases, the pitch angle (_) was variedwith yaw angle (6)

equal to zero, and then 6 was variedwith _ = O.

The flightvaluesof _ and 6 are known from measurementswith the cali-

brated flow angularityprobe (yawmeter). The followingequationswere used

to calculatevaluesof r and ¢ (azimuthalangle of the Prestontube, measur(,d

positivelyin the clockwisedirectionfrom the windwardelementof the cone,

lookingforwardalong the axis).
I

I'= + B2)

@ = tan"l _ - II

These valueswere then used to interpolatewind-tunnelvaluesof Xt/(Xt)],_ 0

and XT/(XT)I,= 0 as a functionof I'and @. The measured flight valuesof

, Xt and XT were correctedfor nonzeror by dividingby the ratioswhich

correspondedto an M nearest to the flightMach number.
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The inconsistencyof the data shown in Figs. A-5 and A-6 suggeststhis

procedurebecomesprogressivelymore inaccurateas P increasesand as the

differencebetweenflightand wind-tunnelMach number increases. Fortunately,

the subsonicvaluesof F were of the order I/2 deg or less, see Table A-2.

Only the data from the Ames ll-Ft and 14-Ft tunnelsat M = 0.90 are comparable.

When r = 0.5 deg, Fig. A-5 shows a differencein_AX on the leewardside of

_ _ 0.28 (AX)F= 0 or a 28% discrepancy;whereason the windward side, ti,edif-

i ferenceis14%. An estimateof the errors for other Mach numbers is not

possible. Becauseof this uncertaintyin the procedurefor correctingflight

_i transitiondata for nonzero_and the inabilityof the ST/_N5programto model
asymmetricboundarylayers,only flightcases for which I_I < O.ll deg wereb

I used in the-developmentof the Preston-tube/skin-frictioncorrelation.

Flight Data

The subsonicflight data are summarizedin Table A-2. As discussedpre-

viously,the last four digits in the flight number designatetime of day dur-W

ing which the data were taken. For example,349.]347denotes flightnumber

34g,and the data were obtainedat 13:47 hours. In additionto nonzero values

of F, the "corrected"data for Xt, XT and AX have also been modifiedto

accountfor non-adiabaticw_emperatures via the followingequation.

(Xt)T_Taw (XT)TCTaw T "_

aw aw

w This is an empiricalequationwhich is based on a curve fit of flight data,

t see Ref.8.

FiguresA-7 and A-8 presentthe distanceto transitiononset for the

I_ uncorrectedand correcteddata as a functionof M_and Reft. FiguresA-9
and A-lO presentsimilarplots of distance to end-of-transitionfor the un-

r

: correctedand correcteddata. In both cases, the correctedvalues of Xt and

: XT show a considerableimprovementin defininga discernibledependenceon

M and Reft. The general trend for both Xt and XT is that transitionoccurs

_'_-_ earlier (i.e., X's decrease)with increasingReft and decreasingM .

In Fig. A-ll transitionReynoldsnumbers ReT, based on the productof

Reft and XT, are shown as a functionof M . It is relevantto here note i

that the differencebetweenU_/u and Ue/Ve for the subsonicflight conditions

is less than I%. Since the data is not collasped into a single curve, it
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appearsthat other variables,such as (Cp)nlls,are involved, lllforLunately,

(Cp)rms was not recordedduring the majorityof the subsonicflighLs.
The extent of tlletransitionzone is plottedin Figs. A-12 and A-]_.

In this case, the correctedvalues in Fig. A-13 show no discerniblereduc-

tion in scatter,andthe correlationremainsunsatisfactory.
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' APIIFNII1X I_,

EFFECTS OF SPHERICAL NOSE BLUNTNESSON

. BOUNDARY-LAYER TRANSITION AT SUPERCRIT]CAL SPEEDS

• In Ref. 8, Dougherty and Fisher declare that the AEOC-BLT Cone has an

I apex with an "equivalent" diameter of O.O04-in. (The word equivalent is

apparently used to denote the fact that the nose-tip is not exactly spheri-

cal.) Since it is known that hemisphere-cylinders generate rather strong

shock waves at high subsonic Mach numbers, e.g., Hsieh_°, a natural

question is: how does nose bluntness affect boundary-layer transition with

! in the transonic regime?

In order to answer this question via analysis, it is necessary to have

at least two computational tools. One is a computer code which will calcu-

late both the inviscid flow with shock waves and the associated profiles of

the boundary layer. The second required tool is a procedure to estimate

when and where boundary layer transition occurs. The computer code developed

by Nietubicz, et al. 3_ was identified as a state-of-the-art method for solv-

ing the Navier-Stokes Equations about axisymmetric bodies and at transonic

speeds. The second needed tool was located by contacting Paul Granville at

NSRDC. He was contacted because he had previously published papers dealing

with boundary-layer transition on axisymmetric bodies. Although none of his

work was directly applicable to the transonic cone question, he did supply

us with a copy of a very recent paper by Wazzan, et al.3;

The important results of this paper is the following equation for esti-

mating the onset of boundary-layer transition.

log_o [Rs(e_)] = -40.4557 + 64.8066H - 26.7538H_ + 3.3819113, (B-l)

for 2.1 < H < 2.8. The authors claim that this equation correlates the well-

known "e9 method", see Ref. 33. Thus, the use of Eq. (B-l) avoids the need

for lengthy stability calculations. The authors state that the method is ap-

plicable to lncoll.presslble flows which:

_; I. do not wlry too much from local similarity,

2. have small surface roughness and/or vibration,

3. low freestream turbulence, and

4. small heating rates, i.e., Tw - T.._:23"C.

O0000002-TSB05



For the purposeof conductinga .co_m2_ara___tive.study oF the effect of no_o-

bluntnesson boundary-layertransitionon the cone, it was decidedto apply

Eq. (B-l) to the compressibleboundarylayer by evaluatingthe kinematic

viscositythat appearsin Rs at the referencetemperatureof Sommer and Short,
,, Eq. (ll).

_ Next, Dr. Nietubiczwas approachedabout using his programfor this type

!_ of analysis. He agreed_thatthis was a problemthat no one has studiedandthought his code should_e able to do the job. Unfortunately,his Navier-

Stokes solverdid not print out the conventional,boundary-layerparameters.

i_ He statedthat he didn't have the time to add a subroutineto accomplish

this and suggestedthe first author visit BRL to performthis task. A three-

day trip was made and with some additionaldebuggingvia the mail, this sub-

routinewas successfullyadded to the BRL program.

The originalagreementwith Nietubiczwas that one or two cases would

be run in order to check for satisfactoryexecution,andat that poin4 Dr.

Pulliamat NASA Ames woul.d_munthe code for a set of freestreamconditions

and differentnose radii. An initialcase was run during the check-outpro-

cess for a sphericalnose radiusof 0.05 in. and with M = 0.95, Reft = 3 x lO6, .

T = 450°R, and Tw = 530°R. The resultsare summarizedin FiguresB-l thru

B-3. FigureB-l shows a portionof the 40 x 80 set of grid points that were

used in the finite differencesolutionof the equations. FiguresB-2 shows

the distributionof pressurecoefficientabout the nose. Here, the axial

distance X is normalizedwith respectto a diameterof 1.4 in., and in order

to focuson the nose region,only the first 8 in. of the cone was modelled.

FigureB-3 presentsthe correspondingMach number contours. The central in-

terior Mach contourenclosesthe region with local Mach numbers> l.lO,and

Mach number decreasesO.Ol with each larger contourout to a Mach number of

0.95. The pressuredistributionand the Mach contours indicatea rather

smooth recompressionas the flow passes from the nose cap onto the cone, and

furthermore,the flow remainsattached. As freestreamMach number is in-

creased, it is anticipatedthat a shock wave would form and the boundarylayer

would thickenand possibly separateas M approachesone. However, the above

calculationassumesa laminarboundarylayer. If transitionto a turbulent

boundarylayer occurs,separationwould be either delayedor, possibly,would

not occur at all. The boundary-layersubroutinewas not ready at the time

this case was computed;thus, rioinformationis presentlyavailableconcerning
transition.
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A second case was computedafter the boundary-layersubroutineb(_came

operational. This case consistsof a nose radiusof O.l in., M,,= 0.95,

Reft = 3 x 106, T = 490°R, and Tw = 530°R. The pressurecoefficientsfor
this case are shown in Fig, B-4. The recompressionfollowedby a second

expansionis characteristicof a separated-flowregion. The associatedMach

contoursare shown in Fig. B-5, and the corespondingstreamlinesare pre-

sented in Fig. B-6. This figure vividly illustratesthe pocket of recircula-

ting flow. A typicalvelocityprofilewithin this separatedregion is pre-

sented in Fig. B-l, and a velocityprofile slightlydownstreamof the separated

zone is shown in Fig. B-8. The boundary-layerthicknessin a separatedregion

is defined to be measured from the point at which the veloc_i_tybecomes posi-

tive. _

The boundary-layerpropertiesupto the beginningof separationare

summarizedfor this case in Table B-l. The left and right-handsides of

Eq. (B-l) are also includein the last two columnsof this table. There are

a numberof observationsthat should be noted from Table B-2. Firstly,the

boundary-layerthicknessoscillatesbut the displacementand momentum thick-

ness (integralproperties)are monotonic. The oscillationsin _ could pro-

bably be eliminatedby placingmore grid points within this region of large

and rapidlyvaryingpressuregradients. Finally,equality betweenthe left

and right-handsides of Eq. (B-l) first occurs betweenX/D values of 0.790

and 0.794. Unfortunately,the correspondingvaluesof H are greater than

2.8 and thus violatethe restrictionon H imposedby Wazzan, et al.32 The

possibleerror this causes in the predictedlocationof transition-onsetis

presentlyunknow_ However, the pressuregradient is small in this region,

and the assumptionof local similarityis probablyvalid.

Since transitiononset occurs near X/D = 0.794, the flow field needs to

be recalculatedusing this information. It is expected that the extent of

the separatedregionwill diminishconsiderablyif not completelydisappear.

Unfortunately,the subjectcode does not presentlyhave the capabilityto al-

low boundary-layertransition,i.e., the flow is either entirelylaminaror

_ entirelyturbulent. This capabilityis needed in order to arrive at a satis-
factorynmdel of the complete flow.

In summary,the nose radius determinesthe wetted length and thereby the

boundarythicknessat the shock. A largernose radius not only pron_tes

boundary-layertransitionat transonicspeeds but can also lead to separation

of a laminarboundarylayer. As long as one is not too concernedabout precise
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com_Larat!_v_ study of the effectsof nose-bluntnessat transonic._;peeds.II

' and when the parametricstudy is completed,the resultswill be reported

f elsewhere.
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